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Abstract—Equations are developed for the scattering pattern of
an arbitrary array of parallel wires. The wires are assumed to be
infinitely long, perfectly conducting, and very small in diameter in
comparison with the wavelength. The incident wave is assumed to
be TM with respect to the wire axis, but it may have normal or
oblique incidence on the wires. The solution includes the interaction

effects among all the wires.

The far-field scattering patterns are presented graphically for
plane arrays, circular arrays, semicircular arrays, square arrays, and
other configurations. If a sufficiently great number of wires is present,
it is shown that the scattering pattern approaches that of a solid con-
ducting cylinder of the same cross-section shape as the wire-grid
array.

INTRODUCTION
&_RRAYS OF PARALLEL WIRES are often used

instead of plane or curved reflectors to reduce

the weight and wind resistance. One type of an-
tenna consists of a grid of parallel wires above a ground
plane [1]. If the wires are very long and are closely
spaced, these structures can be analyzed successfully in
terms of an equivalent shunt susceptance based on the
properties of an infinite plane array of parallel wires.
The infinite plane array has been analyzed by Wait [2].

An analysis based on infinite plane array data cannot
be expected to yield accurate results, however, if the
actual array has marked deviations from the planar con-
figuration, if the actual array is only a few wavelengths
in width, or if the spacing or wire diameter varies rapidly
along the array. The purpose of this paper is to present
an accurate solution for the electromagnetic scattering
by an arbitrary array of parallel wires in which the
number of wires is finite and each wire may have a dif-
ferent diameter. Furthermore, the incident wave need
not be a plane wave, but it is assumed that its magnetic
field vector is orthogonal to the wire axis. For example,
the incident wave might be the field of a line source or an
array of line sources at an arbitrary distance from the
array of parallel wires.

It is shown that the scattering pattern of the arbitrary
array of line sources approaches that of a solid conduct-
ing cylinder of the same cross-section shape if a suf-
ficiently large number of wires are present and they are
arrayed on a closed curve. Thus, the equations and tech-
niques which are included are useful in obtaining the
scattering patterns of circular cylinders, square cylin-
ders, I beams, and so on. With the same equations it is
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possible to calculate the scattering properties of con-
ducting cylindrical shells such as the parabolic cylinder
and the semicircular cylindrical shell. These are of con-
siderable interest both in antenna design and bistatic
radar cross-section theory.

An excellent technique has been developed by
Andreasen [3] for the analysis of perfectly conducting
cylinders of arbitrary cross-section shape. Andreasen’s
method does not, however, apply to arrays of thin paral-
lel wires such as those considered here. Furthermore, we
consider both cylindrical and plane incident waves,
whereas earlier papers [3] treat only the plane-wave
solution.

The currents I, induced on the wires are regarded as
a set of unknown quantities. If there are NV wires, there
are N unknown currents. The scattered field of each
wire is proportional to the current on the wire, and each
individual wire is assumed to have a circular (isotropic)
scattering pattern. Thus, a set of IV linear equations is
obtained for the currents by making the tangential
electric field intensity vanish at the center of each wire.
The system of linear equations is solved by the method
of Crout [4]. After thus determining the complex cur-
rents on all the wires, the distant scattering pattern is
calculated by considering the array of currents to exist
in free space.

The following sections develop the theory and equa-
tions for the arbitrary array of parallel wires and present
numerical and graphical results for several different
arrays.

TueE THEORY OF SCATTERING BY PARALLEL WIRES

An arbitrary array of perfectly conducting, parallel,
circular wires of infinite length is assumed to exist in
unbounded free space as indicated in Fig. 1. Rectangular
and cylindrical coordinate systems are selected with the
z axis parallel to the axes of the wires, as shown. The
incident wave (that is, the field that would exist if the
wires were not present) is assumed to be a harmonic
TM wave with the following characteristics:

Hi=0 1
and
Ejf = E.(x, y)e it (2)

where % is a constant and the time convention e®‘ is
understood. In general, the incident wave will also have
x and y components of electric field intensity, but these
components are not involved in the calculations.
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Richmond: Scattering by Parallel Wires

Fig. 1. An array of three parallel wires of difterent radii, showing

the rectangular and cylindrical coordinate systems.

The incident wave may be, for example, one or more
plane waves or a continuous spectrum of plane waves
traveling in different directions. If a plane wave has an
axis of propagation which makes an angle 6, with the
z axis, its field is given by

E.i = E,(x, y)e—iz cos 6o gin g, 3
where
E(x, y) = Ae ik sin 00 cos 6oty sin o sin d0) (4)
and
k= e (5)

The angle 8y and ¢, are the angular coordinates of the
axis of propagation in the spherical coordinate system.

Another interesting example is an incident field con-
sisting of one or more cylindrical waves of the following
form:

B = E(x, y)ei (6)
where
Eis, y) = AH,™(go) cos nga M
and
g+ =r (8)

The symbol H,® (gp) represents the Hankel function of
the second kind of order #.

Actually, the only data needed on the incident field
are its z axis phase constant £, its frequency or its phase
constant %, and the z component of its electric field in-
tensity evaluated at the center of each wire £;(x,, ¥a).

The current density induced on the surface of wire »
will have only a z component, which can be expressed in
a Fourier series as follows:

0

Tola, ¢, 2) = 2 (a;cos i¢p + b, sin ip)e "=, (9)

=0
If the wire radius is very small in comparison with the
wavelength, and if the field incident on the wire has no
strong variations over the cross section of the wire, the
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foregoing series for the current density will converge
rapidly. Now consider the scattered field of wire 7,
evaluated at an observation point at a distance p, from
the axis of wire #. This scattered field can be though( of
as the field generated by the surface-current density J,
in (9), radiating in unbounded free space. If the obser-
vation distance p, is much greater than the wire
radius, the scattered field of wire # will be essentially
just the field radiated by the zero-order or uniform
component of the current density. In other words, the
zero-order mode dominates over the higher-order modes
except in the near vicinity of the wire. This can be dem-
onstrated analytically by a boundary-value solution,
but a heuristic explanation will suffice here. Obviously
the net current /I, on the wire is deterniined by the zero-
order mode alone.

It can readily be shown that the field of a harmonic
current I, uniformly distributed on a circular cylinder
of radius @, has a g component given by

L, = — (wug®/4&°)1.Jo(ga) Hy™ (gp.)e "
(for Pr > an) (10)

where Jo(ga,) represents the Bessel function of zero
order, and g is given by (8). It is convenient to define
a “modified current” I, as follows:

I = (oug®/4k) 1 ,Jo(gay).

In terms of the modified current, the scattered field of
wire n is given by

En = - In/Ho(z)(an)(?'ﬂ”

(11)

(fOI‘ Pn > an)-

(12)

Since the wires are assumed to be perfectly conduct-
ing, the z component of the total electric field intensity
(incident field plus scattered field) must vanish at the
surface of each wire and everywhere within each wire.
If this condition is enforced at the center of wire m, the
following result is obtained:

N
S H (gpm) L) = Eu(Zm, )

(13)
n=1
where pn, is the distance between wire m and wire #,
prn =V (xm = 22)% + (I — 3)* (14)
and
Omm = Q- (15)

Equations (13), (14), and (15) are based on the assump-
tion that the scattered field of each wire is the same at
the center and at the surface of the wire. This is a
reasonable approximation for wires with radii much
smaller than the wavelength.

As m takes on the values 1, 2, 3, - - -, N, (13) yields
a set of N linear equations for the N unknown currents
I’. These linear equations (with complex coefficients)
are solved with the aid of a digital computer. The
method of Crout [4] has been found to be advantageous
for this purpose.



410

Once the currents have been determined in this
manner, the scattered field can be calculated as follows:

N
— > L/Hy®(gp.)e . (16)

n=1

£ =

Equation (16) is obtained by summing on (12).

We have made two assumptions which limit the range
of validity of the solution. First, the scattered field of a
given wire is assumed to be the same at the center of
that wire as it is at its surface. This is a good approxi-
mation if ka is less than 0.2 (i.e., a <0.03\) in which case
the field at the center differs by less than 1 per cent from
the field at the surface. Second, we assume that each
wire has a circular scattering pattern when we calculate
its scattered field at the center of another wire. By
considering the exact solution for plane-wave scattering
by a single wire, it is easy to show that this is a good
approximation when ke is less than 0.2 if the wires are
not too close together. For example, the distance be-
tween the centers of adjacent wires should be at least
6 radii if ka=0.2. In fact, a minimum spacing of 6 radii
is suggested even when ka is less than 0.2.

THE DISTANT SCATTERING PATTERN

If the observation point is a great distance from the
wires, (16) can be simplified by means of the asymptotic
formula for the Hankel function,

Hy®(x) = /2j/mx e (if x> 1). (17
A further simplification is achieved by noting that the
distance from wire n (located at x,, ¥,) to the observation
point (at p, ¢) is given by
Pr = p — Xn COS ¢ — ¥, sin ¢. (18)
From (16), (17), and (18), the distant scattered field is
given by

N
— \/2j/7rgp e~ Jupeg—ihz Z ]n’

n=1

Eg =

. gd9(xn cos ¢hyn sin ¢)

(19)

The “distant scattering pattern” E(¢) is defined by the
summation in (19),

N

E(¢) = Z [n’efg(xn cos ¢+yn sin )

n=1

(20)

NUMERICAL RESULTS

Using the equations previously given and an IBM
1620 digital computer, numerical calculations have been
carried out for plane arrays of parallel wires, circular ar-
rays, square arrays, and I beam arrays. In this section
some representative results are presented.

Consider first a plane array of wires with uniform
spacing and radii. The incident wave is a plane wave
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Fig. 2. Scattering pattern of a plane array of 15 parallel wires for a
plane wave incident at angles of 0° and 40°, and the physical-
optics solution for a plane conducting strip of the same width.
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Fig. 3. Scattering pattern of a plane array of 15 parallel wires, and

the physical-optics solution for a plane conducting strip of the
same width.

whose axis of propagation is perpendicular to the axes
of the wires. Figure 2 shows the distant scattering pat-
tern of this plane array of wires and the numbering sys-
tem for the wires. It may be observed in Fig. 2 that the
solutions satisfy the reciprocity theorem; that is, the
scattering pattern has exactly the same magnitude
(and phase) when ¢¢=0 and ¢=40° as it has when
$o=40° and ¢=0.

The physical-optics solution for plane-wave scattering
by a thin metal strip of infinite height and width L is
also shown in Fig. 2 for comparison. Normal incidence
is assumed (i.e., ¢o=0), and the width L is taken equal
to the width of the plane array of wires (kL =14). The
surface current density on the metal strip is assumed to
be zero on the shadow side and J= 24— H" on the illumi-
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Fig. 4. Scattering pattern of a circular array of 30 parallel wires, and
the exact solution for a solid conducting cylinder of the same

radius.
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Fig. 5. Scattering pattern of a semicircular array of 30 parallel
wires, and the exact solution for a solid conducting cylinder of the
same radius.

nated side, where # is the unit outward normal on the
conducting surface. Thus, the physical-optics solution
for the scattering pattern of the thin metal strip for
¢o=01is given by

sin [(EL/2) sin 8, sin ¢] |
—= sl

sin ¢

E(¢) = Eo n 6y (21)

where E, represents the total electric field intensity of
the incident plane wave (not just the 2 component). It
may be observed in Fig. 2 that the scattering pattern of
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Fig. 6. Scattering pattern of an I beam array
of 15 wires for normal incidence.
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Fig. 7. Scattering pattern of a square array of

20 wires for normal incidence.

the plane array of wires agrees closely with that of a
thin metal strip of the same width. It has been found
that a solid conducting cylinder or a hollow conducting
cylindrical shell of arbitrary cross section can be closely
approximated by an array of parallel wires if a suf-
ficiently large number of wires is employed. A “good”
approximation is obtained for the scattering pattern if
five wires are used per wavelength along the periphery
of the conducting cylinder, and an “excellent” approxi-
mation will result if ten wires are used per wavelength.

Figure 3 shows the scattering pattern of the plane
array of wires for a plane wave with a propagation
direction defined by the angles 8,=45° and ¢,=0. The
incident plane wave is assumed to have an electric field
intensity of 1 V/m; its z component is thus 0.70711
V/m. The physical-optics solution (21) is shown in Fig.
3 for comparison.

Now consider a circular array of 30 wires with uni-
form spacing and radii. The incident wave is a plane
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wave whose axis of propagation is perpendicular to the
axes of the wires. Figure 4 shows the scattering pattern
of the circular array of 30 wires. For comparison, the
exact scattering pattern of a conducting circular cylinder
of the same radius is also shown. It may be observed
that the scattering properties of the wire-grid cylinder
closely approximate those of the solid conducting cylin-
der if the spacing between adjacent wires is sufficiently
small. In this example there are approximately 5 wires
per wavelength around the circumference of the cylin-
der. By using a larger number of wires per wavelength
it is possible to simulate the solid conducting cylinder
with greater accuracy.

Figure 5 shows the results for a semicircular array of
30 wires. The scattering pattern of a solid conducting
cylinder of the same radius is also shown in Fig. 5 for
comparison. It is seen that the semicircular array has
nearly the same forward scattering as the complete cir-
cular cylinder, but the backscattering is considerably
increased.

Figure 6 shows the scattering pattern for a square
array of 20 wires. The scattering pattern agrees closely
with experimental measurements and with the results
of Mei and Van Bladel [5] for a perfectly conducting
cylinder of square cross section.

Figure 7 shows the results for an array of 15 wires on
the cross section of an I beam. The previous resulits lead
us to believe that the scattering properties of this array
of wires closely approximate these of a solid conducting
I beam of the same dimensions.

CONCLUSIONS

Equations are given for the scattering pattern of an
arbitrary array of parallel wires. The incident wave is
assumed to have no magnetic field component parallel
with the axes of the wires. The solution provides nu-
merical data on the complex currents induced on the
wires and the distant scattering pattern of the array of
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wires. The effects of interaction among the wires are
taken into account automatically.

Numerical results are included for the following ar-
rays: plane, circular, semicircular, square, and I beam.
It is shown that the scattering properties of a solid con-
ducting cylinder of arbitrary cross section, or a thin
conducting cylindrical shell, can be simulated accurately
by an appropriate array of wires. To accomplish this,
there must be at least five wires per wavelength along
the periphery of the cylinder or cylindrical shell.

If the wires are closely spaced, the Lagrange inter-
polation formulas may be employed to permit a sub-
stantial increase in the maximum number of wires.

The solution for an unsymmetrical array of 15 wires
requires about 25 minutes with the IBM 1620 computer
to obtain the complete scattering pattern with incre-
ments of 5° in the scattering angle. With an IBM 7094
digital computer, the solution for an array of 50 wires
is obtained in one minute.

A few of the many possible applications of the tech-
nique are in studying diffraction by a slit in a ground
plane, and the patterns of a two-dimensional horn an-
tenna excited by a line source near the vertex. The
method has been employed in studies of a vertical an-
tenna near a metal smokestack (a Navy problem) and a
parabolic antenna with a line source located away from
the focal axis.
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