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Absfrac&Equations are developed for the scattering pattern of possible to calculate the scattering uro~erties of con-
an arbitrary array of parallel wires. The wires are assumed to be
infinitely long, perfectly conducting, and very small in diameter in
comparison with the wavelength. The incident wave is assumed to
be TM with respect to the wire axis, but it may have normal or

oblique incidence on the wires. The solution includes the interaction
effects among all the wires.

The far-field scattering patterns are presented graphically for

plane arrays, circular arrays, semicircular arrays, square arrays, and

other configurations. If a sufficiently great number of wires is present,
it is shown that the scattering pattern approaches that of a solid con-

ducting cylinder of the same cross-section shape as the wire-grid
array.

INTRODUCTION

A

RRAYS OF PARALLEL WIRES are often used

instead of plane or curved reflectors to reduce

the weight and wind resistance. One type of an-

tenna consists of a grid of parallel wires above a ground

plane [1]. If the wires are very long and are closely

spaced, these structures can be analyzed successful y in

terms of an equivalent shunt susceptance based on the

properties of an infinite plane array of parallel wires.

The infinite plane array has been analyzed by Wait [2].

An analysis based on infinite plane array data cannot

be expected to yield accurate results, however, if the

actual array has marked deviations from the planar con-

figuration, if the actual array is only a few wavelengths

in width, or if the spacing or wire diameter varies rapidl y

along the array. The purpose of this paper is to present

an accurate solution for the electromagnetic scattering

by an arbitrary array of parallel wires in which the

number of wires is finite and each wire may have a dif-

ferent diameter. Furthermore, the incident wave need

not be a plane wave, but it is assumed that its magnetic

field vector is orthogonal to the wire axis. For example,

the incident wave might be the field of a line source or an

array of line sources at an arbitrary distance from the

array of parallel wires.

It is shown that the scattering pattern of the arbitrary

array of line sources approaches that of a solid conduct-

ing cylinder of the same cross-section shape if a suf-

ficiently large number of wires are present and they are

arrayed on a closed curve. Thus, the equations and tech-

niques which are included are useful in obtaining the

scattering patterns of circular cylinders, square cylin-

ders, I beams, and so on. With the same equations it is
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-..
ducting cylindrical shells such as the parabolic cylinder

and the semicircular cylindrical shell. These are of con-

siderable interest both in antenna design and bistatic

radar cross-section theory.

An excellent technique has been developed by

Andreasen [3] for the analysis of perfectly conducting

cylinders of arbitrary cross-section shape. Andreasen’s

method does not, however, apply to arrays of thin paral-

lel wires such as those considered here. Furthermore, we

consider both cylindrical and plane incident waves,

whereas earlier papers [3] treat only the plane-wave

solution.

The currents In induced on the wires are regarded as

a set of unknown quantities. If there are N wires, there

are N unknown currents. The scattered field of each

wire is proportional to the current on the wire, and each

individual wire is assumed to have a circular (isotropic)

scattering pattern. Thus, a set of N linear equations is

obtained for the currents by making the tangential

electric field intensity vanish at the center of each wire.

The system of linear equations is solved by the method

of Crout [4]. After thus determining the complex cur-

rents on all the wires, the distant scattering pattern is

calculated by considering the array of currents to exist

in free space.

The following sections develop the theory and equa-

tions for the arbitrary array of parallel wires and present

numerical and graphical results for several different

arrays.

THE THEORY OF SC~T~ER1~G BY P~R~LLEL WIRES

An arbitrary array of perfectly conducting, parallel,

circular wires of infinite length is assumed to exist in

unbounded free space as indicated in Fig. 1. Rectangular

and cylindrical coordinate systems are selected with the

z axis parallel to the axes of the wires, as shown. The

incident wave (that is, the field that would exist if the

wires were not present) is assumed to be a harmonic

TM wave with the following characteristics:

Hz~ = (I (1)

and

E.i = E,(x7 y)e–~hz (2)

where k is a constant and the time convention ejwt is

understood. In general, the incident wave will also have

x and y components of electric field intensity, but these

components are not involved in the calculations.
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Fig. 1. An array of three parallel wires of difterent radii, showing
the rectangular and cylindrical coordinate systems.

The incident wave may be, for example, one or more

plane waves or a continuous spectrum of plane waves

traveling in different directions, If a plane wave has an

axis of propagation which makes an angle 00 with the

z axis, its field is given by

(3)E,i = E,(x, y)e–j~z ‘Os’0 sin 00

and

k2 = co2,ue, (5)

The angle do and @o are the angular cclordinates of the

axis of propagation in the spherical coordinate system.

Another interesting example is an incident field con-

sisting of one or more cylindrical waves of the following

form:

E,i = -MT, Y)e-’hz (6)

where

Ei(x, y) = AHn@)(gp) Cos m+o (7)

and

g’ + h’ = kz. (8)

The symbol lln[’j (gp) represents the Hankel function of

the second kind of order n.

Actually, the only data needed on the incident field

are its z axis phase constant h, its frequency or its phase

constant k, and the z component of its electric field in-

tensity evaluated at the center of each wire E;(x~, y.).

The current density induced on the surface of wire n

will have only a z component, which can be expressed in

a Fourier series as follows:

J.(a, +, :) = ~ (ai cos L$ + b, sin @)e-j’L’. (9)
,=o

If the wire radius is very small in comparison with the

wavelength, and if the field incident on the wire has no

strong variations over the cross section of the wire, the

foregoing series for the current density will converge

rapidly. Now consider the scattered field of wire n,

evaluated at an observation point at a distance p,, from

the axis of wire n. This scattered field can be though ( of

as the field generated by the surface-current density J.

in (9), radiating in unbounded free space. If the obser-

vation distance p,, is much greater than the wire

radius, the scattered field of wire n will be essentially

just the field radiated by the zero-order or unifclrm

component of the current density. In other words, the

zero-order mode dominates over the higher-order modes

except in the near vicinity of the wire. This can be dem-

onstrated analytically by a boundary-value solution,

but a heuristic explanation will suffice here. Obviously

the net current 1. on the wire is detern~ined b!; the zero-

order mode alone.

It can readily be shown that the field of a harmc)nic

current 1. uniformly distributed on a circular cylinder

of radius an has a z component given by

En = – (ti,ug2/4k2)IJO(ga,, )HO(2)(gp,,)e-’~’

(for fJ. ~ a.) (10)

where Jo(ga,,) represents the Bessel functicm of zero

order, and g is given by (8). It is convenient to define

a ‘(modified current” In’ as follows:

1,,’ = (tipg2/4k2)InJo(gan). (11)

In terms of the modified current, the scattered field of

wire n is given by

En = – I.’Ho (z) (gp,,)e–~}” (for p,, ~ u.). (12)

Since the wires are assumed to be perfectly conduct-

ing, the z component of the total electric fielcl intensity

(incident field plus scattered field) must van ish at the

surface of each wire and everywhere within each wire.

If this condition is enforced at the center of wire m, the

following result is obtained:

~ Z7”’’)(gpm,,)In’ = I?,(%, ym) (13)
.=l

where p~~ is the distance between wire m and wire n,

Pm = V’(G – $.)2 + (ym – yn)2 (14)

and

pmm = am, (15)

Equations (13), (14), and (15) are based on the assunlp-

tion that the scattered field of each wire is the same at

the center and at the surface of the wire. This is a

reasonable approximation for wires with radii m~~ch

smaller than the wavelength.

As m takes on the values 1, 2, 3, . . ., N, 1(13) yields

a set of N linear equations for the N unknown currents

In’. These linear equations (with complex coefficients)

are solved with the aid of a digital computer. ‘l~he

method of Crout [4] has been found to be advantageous

for this purpose.
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Once the currents have been determined in this 8 ho O’~,r& N=15

manner, the scattered field can be calculated as follows:
Wire Radius ka=0,05
Wm Spocmg ks=l.O

7 - b:h

E,, = - ~ 14H,(’(gp,,)e-~’”.

80=90” Array of W,res

(16) . . . . Phystcal Optics Solut, on

For Cond. ct!ng Strip
.=l 6 -

.

Equation (16) is obtained by summing on (12).
●

5

We have made two assumptions which limit the range .

of validity of the solution. First, the scattered field of a E(+)
.
.

given wire is assumed to be the same at the center of 4 ~ ●

that wire as it is at its surface. This is a good approxi-

-X

.

.

mation if ka is less than 0.2 (i. e., a <0.03X) in which case
3 ●

Propo!gat,on ●

the field at the center differs by less than 1 per cent from AXIS ●

the field at the surface. Second, we assume that each

.
2

wire has a circular scattering pattern when we calculate

its scattered field at the center of another wire. By I / \ { \

considering the exact solution for plane-wave scattering
\

by a single wire, it is easy to show that this is a good ~ .

approximation when ka is less than 0.2 if the wires are
-8o -60 -40 -20 20 40 60 80

+ (De9;ees)

not too close together. For example, the distance be-

tween the centers of adjacent wires should be at least Fig. 2. Scattering pattern of a plane array of 15 parallel wires for a

6 radii if ku. = 0.2. In fact, a minimum spacing of 6 radii
plane wave incident at angles of 0° and 40°, and the physical-
optics solution for a plane conducting strip of the same width.

is suggested even when ka is less than 0.2.

THE DISTANT SCATTERING PATTERN

If the observation point is a great distance from the

wires, (16) can be simplified by means of the asymptotic

formula for the Hankel function,

HO ‘2)(x) = <2j/mx e–i’ (if x>> 1). (17)

A further simplification is achieved by noting that the

distance from wire n (located at x., y.) to the observation

point (at p, O) is given by

Pn=P— WcOS@-y. Sin@. (18)

From (16), (1 7), and (18), the distant scattered field is

given by

The “distant scattering pattern” E(@) is defined by the

summation in (19),

N

E(@) = ~ Infeio(z. ..s &-tin sin t). (20)
.=l

NUMERICAL RESULTS

Using the equations previously given and an I B lbf

1620 digital computer, numerical calculations have been

carried out for plane arrays of parallel wires, circular ar-

rays, square arrays, and I beam arrays. In this section

some representative results are presented.

Consider first a plane array of wires with uniform

spacing and radii. The incident wave is a plane wave

6 -
No, of Wires N=15
W[re Radius ko=O05

5 .

$W:p.cmg ks= 1.0

. ‘.’= Plone ArrQy of Wires

. . . . Physicol– Opttcs Solution

.
4
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Fig. 3. Scattering pattern of a plane array of 15 parallel wires, and
the phvsical-optics solution for a plane conducting strip of the
same width.

whose axis of propagation is perpendicular to the axes

of the wires. Figure 2 shows the distant scattering pat-

tern of this plane array of wires and the numbering sys-

tem for the wires. It may be observed in Fig. 2 that the

solutions satisfy the reciprocity theorem; that is, the

scattering pattern has exactly the same magnitude

(and phase) when q50= O and q5=40° as it has when

+,=40° and +=0.

The physical-optics solution for plane-wave scattering

by a thin metal strip of infinite height and width L is

also shown in Fig. 2 for comparison. Normal incidence

is assumed (i.e., @O= O), and the width L is taken equal

to the width of the plane array of wires (kL = 14). The

surface current density on the metal strip is assumed to

be zero on the shadow side and J= 2fi –H% on the illumi-



1965 Richmond: Scattering by Parallel Wires ,411

81 1 1 , ,

. .

I 77;[ ~’~=
——Arrayof W,res

. ●

E (+) “***
----- Solld Cyllnder

4 — ● **

3

..\
21+

,..
-! . . . . . . .

‘*-.9 ‘. / %*.. - - “-=- -
. .

01 I I I I 1 I I I I I
-80 -60 -40 -20 0 20 40 60 80

~ (Degrees)

Fig. 4. Scattering pattern of a circular array of 30 parallel wires, and
the exact solution for a solid conducting cylinder of the same
radius.
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Fig. 5. Scattering pattern of a semicircular array of 30 parallel
wires, and the exact solution for a solid conducting cylinder cf the
same radius.

nated side, where $i is the unit outward normal on the

conducting surface. Thus, the physical-optics solution

for the scattering pattern of the thin metal strip for

@O= O is given by

E(d) = E,
sin [(kL/2) sin Oosin @]

sin Oo (21)
sin $

where EiI represents the total electric field intensity of

the incident plane wave (not just the z. component). It

may be observed in Fig. 2 that the scattering pattern of
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Fig. 6. Scattering pattern of an I beam array
of 15 wires for normal incidence.
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Fig. 7. Scattering pattern of a square array of
20 wires for normal incidence.

o

the plane array of wires agrees closely with that of a

thin metal strip of the same width. It has been found

that a solid conducting cylinder or a hollow conducting

cylindrical shell of arbitrary cross section can be closely

approximated by an array of parallel wires if a suf-

ficiently large number of wires is employed. A “good”

approximation is obtained for the scattering pattern if

five wires are used per wavelength along the periphery

of the conducting cylinder, and an “excellent)’ approxi-

mation will result if ten wires are used per wavelen~th.

Figure 3 shows the scattering pattern of the pllane

array of wires for a plane wave with a propagation

direction defined by the angles do= 45° and <$~= O. The

incident plane wave is assumed to have an electric field

intensity of 1 17/m; its z component is thus 0.70711
\l/m. The phvsical.optics solution (21) is shc)wn in l~ig.

3 for comparison.

Now consider a circular array of 3(I wires with uni-

form spacing and radii. The incident wave is a plane
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wave whose axis of propagation is perpendicular to the

axes of the wires. Figure 4 shows the scattering pattern

of the circular array of 30 wires. For comparison, the

exact scattering pattern of a conducting circular cylinder

of the same radius is also shown. It may be observed

that the scattering properties of the wire-grid cylinder

closely approximate those of the solid conducting cylin-

der if the spacing between adj scent wires is sufficiently

small. In this example there are approximately 5 wires

per wavelength around the circumference of the cylin-

der. By using a larger number of wires per wavelength

it is possible to simulate the solid conducting cylinder

with greater accuracy.

Figure 5 shows the results for a semicircular array of

30 wires. The scattering pattern of a solid conducting

cylinder of the same radius is also shown in Fig. 5 for

comparison. It is seen that the semicircular array has

nearly the same forward scattering as the complete cir-

cular cylinder, but the backscattering is considerably

increased.

Figure 6 shows the scattering pattern for a square

array of 20 wires. The scattering pattern agrees closely

with experimental measurements and with the results

of Mei and Van Bladel [5] for a perfectly conducting

cylinder of square cross section.

Figure 7 shows the results for an array of 15 wires on

the cross section of an I beam. The previous results lead

us to believe that the scattering properties of this array

of wires closely approximate these of a solid conducting

I beam of the same dimensions,

CONCLUSIONS

Equations are given for the scattering pattern of an

arbitrary array of parallel wires. The incident wave is

assumed to have no magnetic field component parallel

with the axes of the wires. The solution provides nu-

merical data on the complex currents induced on the

wires and the distant scattering pattern of the array of

wires. The effects of interaction among the wires

taken into account automatically.

Numerical results are included for the following

are

ar-

rays: plane, circular, semicircular, square, and I beam.

It is shown that the scattering properties of a solid con-

ducting cylinder of arbitrary cross section, or a thin

conducting cylindrical shell, can be simulated accurately

by an appropriate array of wires. To accomplish this,

there must be at least five wires per wavelength along

the periphery of the cylinder or cylindrical shell.

If the wires are closely spaced, the Lagrange inter-

polation formulas may be employed to permit a sub-

stantial increase in the maximum number of wires.

The solution for an unsymmetrical array of 15 wires

requires about 25 minutes with the IBM 1620 computer

to obtain the complete scattering pattern with incre-

ments of 5° in the scattering angle. With an IBM 7094

digital computer, the solution for an array of 50 wires

is obtained in one minute.

f! few of the many possible applications of the tech-

nique are in studying diffraction by a slit in a ground

plane, and the patterns of a two-dimensional horn an-

tenna excited by a line source near the vertex. The

method has been employed in studies of a vertical an-

tenna near a metal smokestack (a Navy problem) and a

parabolic antenna with a line source located away from

the focal axis.
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